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Abstract We consider the non-perturbative non-stationary response of a one-dimensional 
conductor and the carrier localialjon induced by an exlemal electric field wilhin the oneelectron 
one-band tight-binding appmltimation. Exact general analytical expressions for the polarization, 
electric cumnt and canier mean square displacement are obtained. We find a new effect of 
absence ofinducedpoloriurrion in an arbitmy electric field for an elemon, inilially localized 
on one site. If the elecmn wavevector change Ak during one period of the field is a multiple 
of 2 n .  the electron is typically delocalized except for the local idon in a Blwh state 111 rhe 
borrom of rhe band and a generalized dynamic locnlirnrion. If Akf21r is a non-integer, the 
electron remains localized. Particular cases of a harmonic field, a sum of consmt and harmonic 
fields and of periodic pulses are also considered for which localization occurs, i.e. suppression 
of wherenl tunnelling. 

1. Introduction 

Quasi-one-dimensional (QID) systems such as conjugated polymers exhibit interesting 
electric and optical properties owing to a high degree of electron delocalization along 
molecular chains [ 1-31, Theoretical calculations of conductivity and susceptibilities 
typically take account of the applied field in a perturbative way up to second or third order 
and are limited to the pure harmonic (AC) case [1-6]. Electron dynamics in band models 
of crystalline conductors have been studied extensively for the case of a uniform time- 
independent (DC) electric field. when the spectrum transforms into a Stark ladder and Bloch 
oscillations OCCUI 17-13], A new effect called dynamic locdizafion has been discovered 
previously by Dunlop and Kenkre (DK) [ 141 in a harmonic field; for certain values of the 
ratio E/o of the field amplitude to its frequency, the initially strong localized electron in a 
one-band conductor turns out to be localized for arbitrary time. 

In this paper we present rigorous analytical results on e l m o n  localization and a non- 
linear response to an electric field of arbitrary magnitude and time dependence. We consider 
an infinite ID chain in the one-electron one-band tight-binding approximation with nearest- 
neighbour transfer integrals V in the Wannier basis set In) under the action of an arbitrary 
electric field E(r): 

H ( t )  = - V C ( l n ) ( n + I I + I n +  l ) (n l )+eE( t )Cnln) (n l .  (1) 
n n 
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The intersite distance is unity, the electron charge is -e, and the position operator is 
assumed to be diagonal. The quantities that we are interested in are the induced polarization 
Ad@), theelectric current density j ( f ) ,  and the electron mean square displacement A(n2(t)): 

where A P - , ~ ( ~ )  = p...(t) -pn,-(O) is the induced change in the density matrix. It is easy to 
see that the exact solution to the Schrodinger equation with the Hamiltonian ( I )  is provided 
by the wavefunction Irp(t)) = En cn(t)ln), where 

Jn-, are Bessel functions of order n - r ,  where n ,  r are sites, and q ( t )  = eh-] 1; dt' E(t') 
is the effective field pulse area. 

2. Electron response in an arbitrary field 

Rather lengthy calculations of quantities, defined in equation (2), with the use of equation (3) 
give the following new exact and most general solutions for the electron response [ I Q  

Ad@) = 2ep- 'dt '  sin[q(t') - K ]  q ( t )  =eh- '  L ' d t ' E ( t 0  (4) i l  
A(n2(t)) = 2 ( ~ ) 2 J d r d r J d i " j N , c o s [ o ( r ' )  - o(t")l -pzcos[q(t ' )  + ~ ( 2 " )  - K 2 ] )  

where Ne is the total number of electrons in the system, and pi and K ;  arc determined by 
the non-diagonal elements of the initial density matrix: 

For an initial field-free eigenfunction (a Bloch wave) we have the following cases. 
Case A is 

p = pz = 1 K = K ,  = k P I  = Z(n(0)) + 1 ~2 = 2k (7) 

where k is the wavevector. Electrons in an empty band can be created, for example, by 
doping or photoexciting a dielectric or by injecting carriers from electrodes. 
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Case B is a partly filled metallic band with U = 2kF/lr electrons per atom corresponding 
to the following substitutions (kF is the Fermi wavevector): 

2N 
Ne + -kF s i n q  -+ 0 

n 
2N . N .  

COS K + COSKI + - Sltl kF COS Kz --f - Sln(2k~). 
lr lr 

Case C is one or several electrons, each initially localized on one site; this case is 
special as it reveals a new effect, namely the absence ofinducedpolarization in an arbitrary 
electric field. As can be seen from equations (4)-(6) pi = 0 and Ad(r)  E j ( t )  5 0; there 
is no induced dipole moment and no current. A non-confined electron positioned like a 
quasi-classical particle on one site does not shift in an arbitrary field at all! 

The interpretation of this effect is the following: the coordinate Kronecker symbol 
S produces a uniform filling of all the states in the band - N-I (vanishing in the 
thermodynamic limit). As the time evolution of electrons in an external field corresponds 
to the shift of the wavevectors k(t) of occupied states (see, e.g., [9] and equations (4) and 
(5)) by the same amount q( t ) ,  in this case the first BriUouin zone becomes shifted as a 
whole with time, but that does not change the matrix elements which are periodic ink. The 
effect is the result of coherent compensation of quantum transitions between states in the 
band due to periodicity in k-space. 

The centre of mass of the wave packet does not move, although ils width (the first term 
of A(n2(r)) in equation (5)) grows unboundedly. The initial delocalization of the electron 
destroys the effect. The effect considered is different from the cases of a fully occupied 
band, when there are no accessible states for the electron to make transitions to and from 
the dynamic localizntiun [14], which we shall consider in more detail below. Although 
strongly localized initial conditions seem somewhat artificial, we believe that the effect 
can be observed at low temperatures in high-quality superlattices or quantum dot arrays; 
localizing an electron in a nearly macroscopic quantum well seems quite realistic. 

3. Periodic fields or pulses 

Next let us consider the electron localization, induced by an electric field, periodic in time 
(pulses included). By localization we mean the regimes when both the time dependences of 
the polarization and mean square displacements (4) and (5) are bounded and oscillate only, 
so that the average electron velocity vanishes. 

For a Bloch electron (case A) equations (4) and (5) take the form 

(8) 
V 
R 

V 
R 

Ad@)  = Ze-Z( t )  A(n2(t))  = 4 [ Z ( t ) ] *  - Zpr-Z(t) 

The system evolution is determined by the change Ak in the wavevector during one 
period of the field. 
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(a) If Ak is a multiple of 2rr (periodic case), i.e. 

Ak = q(t + T) - q ( f )  = 2nl 1 integer (10) 

then the average displacements during different periods are additive: 

(11) 
V 

U =Z--I(T) 
ET 

Ad(t = nT)  = -eut A(n2(t = nT)) =(ut)'  -,o,ut 

and the particle propagates with a constant average velocity U with periodic oscillations 
superimposed on it. As the integral over the period in equations (9) and ( I  1) is typically non- 
zero, this periodic case corresponds to a delocalized regime. Two exceptions are locafization 
at the bottom ojthe band and the generalized dynamic localization. 

The electron in a Bloch state at the bottom of the band (k = 0)  is localized if Z(t) = 0 
(equation (9)). The sufficient condition is provided by equation (IO) plus the symmetry of 
E( t )  within the period 

E(To f Af) = E(To - A t ) .  (12) 

In fact, then the pulse area q, (equation (4)) is antisymmetric: q( f i  t- A t )  - a(%) = 
 TO - At) - a(%)] and the average velocity (equations (11) and (9)) becomes zero. 
All the other Bloch states (k  # 0) are typically delocalized and propagate with the average 
velocity U, which is a multiple of the field-free value uo = 2 ( V / h )  sin k and the factor UE, 
that characterizes the average effect of the field during one period. The latter becomes zero 
in the generalized dynamic localization regime, defined by 

When equations (12) and (13) for the parameters of the electric field are satisfied, the 
integral I ( t )  in equation (9), which determines the average velocity ( l l) ,  becomes zero for 
arbitrary k. Consequently the polarization and mean square displacement (11) retain only 
bounded oscillating components; the electron is localized. 

DK [141 calculated only the mean square displacement in a pure harmonic (AC) field 
for an initial state localized on one site. They found one particular form of the effect of 
dynamic localization but have not noted the regime of localization at the bottom of the 
band and could not observe the effect of absence of induced polarization as it requires the 
consideration of polarization and non-localized initial states. The response for an extended 
initial wavefunction cannot be obtained as a weighted sum of probability propagators, 
as the coherence of contributions originating from different sites will then be lost. The 
contributions of different particles are additive, while contributions from site occupation 
probabilities of the same particle are not; the non-diagonal elements of the density matrix 
should be taken into account from the very beginning. In our approach we consider the 
general case of arbitrary initial states. 

We note that the generalized dynamic localization takes place in specific applied 
fields. It characterizes the spatial evolution of the wave packet but does not characterize 
the kinetic coefficients. In fact, the AC conductivity is determined by the oscillating 
component of the polarization which is non-zero, while the DC conductivity in the regime 
(13) should be obtained from the solution of the problem incorporating a sum of DC 
and AC fields. In a constant field no Dc is produced, while in the low-frequency AC 
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field the nth-order conductivity diverges as U-”, although the total AC conductivity, 
obtained as a sum of all order processes with the output frequency w ,  does not diverge: 
u ( w )  = 4 e ( V / h ) p c o s k J 1 ( e )  + 0 as w -+ 0. As wc arc considering a quantum problem 
with time-reversible evolution without relaxation, the Nernst-Einstein formula does not 

(b) The next case corresponds to an arbitrary change Ak = Aq = q ( T )  - q(0) during 
one period, which is not a multiple of 2n. The expression for I @ )  in equation (9), which 
determines Ad(t )  and A(n2(t)) (equation (8)) is governed by 

apply. 

In the commensurate case, when Aqj211 = mjm’ is a rational number, the electron 
performs periodic motion with the period m’T (see (8) and (14)). The particle is localized; 
its displacement is finite. In the particular case m’ = 2 the electron reverses its motion after 
each pulse. 

For Aq/2rr the incommensurate case, the motion is quasi-periodic. For finite time t it 
can be approximated with arbitrary accuracy by the commensurate case with large values 
of m, m‘. In both cases, Ad(r) and A(n2(t)) have no unbounded components and oscillate 
only, which corresponds to electron localization. 

Finally, we consider some particular cases to illustrate the general classification scheme. 
The pure harmonic (AC) field E ( t )  = E cos(wt) corresponds to case (a). The expression 

for the electron velocity, deduced from equations (8) and (9), 

v .  eE 
E = - 

h hw 
v = 2- sinkJo(6) 

reveals the regimes of localization at the bottom of the band, k = 0 (equation (U)), and 
dynamic localization [14], J ( E )  = 0 (equation (13)). The zeroth-order Bessel function JO 
appears also in the field-induced renormalized spectrum of a two-level system [16]. 

A DC + AC field E( t )  = Eo + E cos(ot) belongs to classes (a) and (b), where one now 
has p = wo/w (the ratio of the Bloch frequency w g  = e E / h  to the harmonic frequency 
w )  an integer, a rational number or an irrational number. For p an integer (case (i)) the 
electron is typically delocalized and propagates with the average velocity 

v .  
h 

v = Z(-l)”- sinkJ,(t) J & ( E )  = dr cos(pr - ~ s i n r )  (16) 

(where J&(E)  is the Anger function), except for the regimes of localization at the bottom 
of the band, k = 0, and generalized dynamic localization, J”(E) = 0 (cf equations (13) and 
(14)). For p a non-integer (case (ii)) the integral I ( r )  in equation (9) is bounded 

and the electron oscillates in a localized state. 

time interval T .  The expression for the electron velocity given by 
Finally let us consider pulses, consisting of n periods of cosine function, repeated at 
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consists of contributions from free-electron propagation during the part of the period 
(q - n ) / q  and propagation in an A c  field (15) during n T / q .  Again we observe the 
localization at the bottom of the band, k = 0, and the generalized dynamic localization 
& ( E )  = 1 - q/n. 

If the pulse contains n + $ cosine periods, the electron is delocalized (case (a)). Its 
velocity in addition to (18) consists of the contribution from the propagation during half the 
period with different U‘: 

K A Pronin et a1 

U = 2Vh-’q-’(sink[q - (n + 4) + (n + ; ) J ~ ( E ) ]  + c o s k i E ~ ( ~ ) }  

sin(@s - E sin r )  dr.  

Both condition (12) and condition (13) are violated; so there is no localization at the bottom 
of the band and no dynamic localization in this case. 

In conclusion, we find that dynamic localization is a general phenomenon, occurring for 
arbitrary initial states and both DC and AC fields. It corresponds therefore to a suppression 
of coherent tunnelling as the degeneracy of sites is lifted temporally by the external periodic 
field, or by a sequence of pulses. 
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